Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation
نویسندگان
چکیده
Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.
منابع مشابه
Echoic Sensory Substitution Information in a Single Obstacle Circumvention Task
Accurate motor control is required when walking around obstacles in order to avoid collisions. When vision is unavailable, sensory substitution can be used to improve locomotion through the environment. Tactile sensory substitution devices (SSDs) are electronic travel aids, some of which indicate the distance of an obstacle using the rate of vibration of a transducer on the skin. We investigate...
متن کاملPerceptual Modalities Guiding Bat Flight in a Native Habitat
Flying animals accomplish high-speed navigation through fields of obstacles using a suite of sensory modalities that blend spatial memory with input from vision, tactile sensing, and, in the case of most bats and some other animals, echolocation. Although a good deal of previous research has been focused on the role of individual modes of sensing in animal locomotion, our understanding of senso...
متن کاملSensory Substitution: The Spatial Updating of Auditory Scenes “Mimics” the Spatial Updating of Visual Scenes
Visual-to-auditory sensory substitution is used to convey visual information through audition, and it was initially created to compensate for blindness; it consists of software converting the visual images captured by a video-camera into the equivalent auditory images, or "soundscapes". Here, it was used by blindfolded sighted participants to learn the spatial position of simple shapes depicted...
متن کاملMatched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus
In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-sele...
متن کاملThe effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.
Mobility training programs for helping the blind navigate through unknown places with a White-Cane significantly improve their mobility. However, what is the effect of new assistive technologies, offering more information to the blind user, on the underlying premises of these programs such as navigation patterns? We developed the virtual-EyeCane, a minimalistic sensory substitution device trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017